A JavaScript library for arbitrary-precision arithmetic.
See the README on GitHub for a quick-start introduction.
      In all examples below, var and semicolons are not shown, and if a commented-out
      value is in quotes it means toString has been called on the preceding expression.
    
BigNumber(n [, base]) ⇒ BigNumber
    
      n: number|string|BigNumber
      base: number: integer, 2 to 36 inclusive. (See
      ALPHABET to extend this range).
    
      Returns a new instance of a BigNumber object with value n, where n
      is a numeric value in the specified base, or base 10 if
      base is omitted or is null or undefined.
    
x = new BigNumber(123.4567) // '123.4567' // 'new' is optional y = BigNumber(x) // '123.4567'
      If n is a base 10 value it can be in normal (fixed-point) or
      exponential notation. Values in other bases must be in normal notation. Values in any base can
      have fraction digits, i.e. digits after the decimal point.
    
new BigNumber(43210)                       // '43210'
new BigNumber('4.321e+4')                  // '43210'
new BigNumber('-735.0918e-430')            // '-7.350918e-428'
new BigNumber('123412421.234324', 5)       // '607236.557696'
    
      Signed 0, signed Infinity and NaN are supported.
    
new BigNumber('-Infinity')                 // '-Infinity'
new BigNumber(NaN)                         // 'NaN'
new BigNumber(-0)                          // '0'
new BigNumber('.5')                        // '0.5'
new BigNumber('+2')                        // '2'
    
      String values in hexadecimal literal form, e.g. '0xff', are valid, as are
      string values with the octal and binary prefixs '0o' and '0b'.
      String values in octal literal form without the prefix will be interpreted as
      decimals, e.g. '011' is interpreted as 11, not 9.
    
new BigNumber(-10110100.1, 2)              // '-180.5'
new BigNumber('-0b10110100.1')             // '-180.5'
new BigNumber('ff.8', 16)                  // '255.5'
new BigNumber('0xff.8')                    // '255.5'
    
      If a base is specified, n is rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE settings. This includes base
      10 so don't include a base parameter for decimal values unless
      this behaviour is wanted.
    
BigNumber.config({ DECIMAL_PLACES: 5 })
new BigNumber(1.23456789)                  // '1.23456789'
new BigNumber(1.23456789, 10)              // '1.23457'
    An error is thrown if base is invalid. See Errors.
      There is no limit to the number of digits of a value of type string (other than
      that of JavaScript's maximum array size). See RANGE to set
      the maximum and minimum possible exponent value of a BigNumber.
    
new BigNumber('5032485723458348569331745.33434346346912144534543')
new BigNumber('4.321e10000000')
    BigNumber NaN is returned if n is invalid
    (unless BigNumber.DEBUG is true, see below).
new BigNumber('.1*')                       // 'NaN'
new BigNumber('blurgh')                    // 'NaN'
new BigNumber(9, 2)                        // 'NaN'
    
      To aid in debugging, if BigNumber.DEBUG is true then an error will
      be thrown on an invalid n. An error will also be thrown if n is of
      type number with more than 15 significant digits, as calling
      toString or valueOf on
      these numbers may not result in the intended value.
    
console.log(823456789123456.3) // 823456789123456.2 new BigNumber(823456789123456.3) // '823456789123456.2' BigNumber.DEBUG = true // '[BigNumber Error] Number primitive has more than 15 significant digits' new BigNumber(823456789123456.3) // '[BigNumber Error] Not a base 2 number' new BigNumber(9, 2)
      A BigNumber can also be created from an object literal.
      Use isBigNumber to check that it is well-formed.
    
new BigNumber({ s: 1, e: 2, c: [ 777, 12300000000000 ], _isBigNumber: true })    // '777.123'
    The static methods of a BigNumber constructor.
.clone([object]) ⇒ BigNumber constructor
    object: object
      Returns a new independent BigNumber constructor with configuration as described by
      object (see config), or with the default
      configuration if object is null or undefined.
    
      Throws if object is not an object. See Errors.
    
BigNumber.config({ DECIMAL_PLACES: 5 })
BN = BigNumber.clone({ DECIMAL_PLACES: 9 })
x = new BigNumber(1)
y = new BN(1)
x.div(3)                        // 0.33333
y.div(3)                        // 0.333333333
// BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to:
BN = BigNumber.clone()
BN.config({ DECIMAL_PLACES: 9 })
    set([object]) ⇒ object
      object: object: an object that contains some or all of the following
      properties.
    
Configures the settings for this particular BigNumber constructor.
DECIMAL_PLACES0 to 1e+9 inclusive20
      BigNumber.config({ DECIMAL_PLACES: 5 })
BigNumber.set({ DECIMAL_PLACES: 5 })    // equivalent
      ROUNDING_MODE0 to 8 inclusive4 (ROUND_HALF_UP)
      decimalPlaces,
        precision,
        toExponential,
        toFixed,
        toFormat and
        toPrecision.
      BigNumber.config({ ROUNDING_MODE: 0 })
BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP })    // equivalent
        EXPONENTIAL_AT0 to 1e+9 inclusive, or
        -1e+9 to 0 inclusive, integer
        0 to 1e+9 inclusive ][-7, 20]
      toString returns exponential notation.
      [-7, 20].
      BigNumber.config({ EXPONENTIAL_AT: 2 })
new BigNumber(12.3)         // '12.3'        e is only 1
new BigNumber(123)          // '1.23e+2'
new BigNumber(0.123)        // '0.123'       e is only -1
new BigNumber(0.0123)       // '1.23e-2'
BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
new BigNumber(123456789)    // '123456789'   e is only 8
new BigNumber(0.000000123)  // '1.23e-7'
// Almost never return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
// Always return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 0 })
      EXPONENTIAL_AT, the toFixed method
        will always return a value in normal notation and the toExponential method
        will always return a value in exponential form.
      toString with a base argument, e.g. toString(10), will
        also always return normal notation.
      RANGE1 to 1e+9 inclusive, or
        -1e+9 to -1 inclusive, integer
        1 to 1e+9 inclusive ][-1e+9, 1e+9]
      Infinity and underflow to
        zero occurs.
      Infinity and those with a
        negative exponent of greater magnitude become zero.
      Infinity, use [-324, 308].
      BigNumber.config({ RANGE: 500 })
BigNumber.config().RANGE     // [ -500, 500 ]
new BigNumber('9.999e499')   // '9.999e+499'
new BigNumber('1e500')       // 'Infinity'
new BigNumber('1e-499')      // '1e-499'
new BigNumber('1e-500')      // '0'
BigNumber.config({ RANGE: [-3, 4] })
new BigNumber(99999)         // '99999'      e is only 4
new BigNumber(100000)        // 'Infinity'   e is 5
new BigNumber(0.001)         // '0.01'       e is only -3
new BigNumber(0.0001)        // '0'          e is -4
      9.999...e+1000000000.1e-1000000000.
      CRYPTOtrue or false.false
      CRYPTO is set to true then the
        random method will generate random digits using
        crypto.getRandomValues in browsers that support it, or
        crypto.randomBytes if using Node.js.
      CRYPTO to true will fail and an exception will be thrown.
      CRYPTO is false then the source of randomness used will be
        Math.random (which is assumed to generate at least 30 bits of
        randomness).
      random.
// Node.js
global.crypto = require('crypto')
BigNumber.config({ CRYPTO: true })
BigNumber.config().CRYPTO       // true
BigNumber.random()              // 0.54340758610486147524
      MODULO_MODE0 to 9 inclusive1 (ROUND_DOWN)
      a mod n.q = a / n, is calculated according to the
        ROUNDING_MODE that corresponds to the chosen
        MODULO_MODE.
      r, is calculated as: r = a - n * q.| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | The remainder is positive if the dividend is negative, otherwise it is negative. | 
| ROUND_DOWN | 1 | The remainder has the same sign as the dividend. This uses 'truncating division' and matches the behaviour of JavaScript's remainder operator %. | 
| ROUND_FLOOR | 3 | The remainder has the same sign as the divisor. This matches Python's %operator. | 
| ROUND_HALF_EVEN | 6 | The IEEE 754 remainder function. | 
| EUCLID | 9 | The remainder is always positive. Euclidian division: q = sign(n) * floor(a / abs(n)) | 
modulo.BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
BigNumber.config({ MODULO_MODE: 9 })          // equivalent
      POW_PRECISION0 to 1e+9 inclusive.0
      0, the number of significant digits will not be limited.exponentiatedBy.BigNumber.config({ POW_PRECISION: 100 })FORMATFORMAT object configures the format of the string returned by the
        toFormat method.
      FORMAT object that are
        recognised, and their default values.
      FORMAT object will not be checked for validity. The existing
         FORMAT object will simply be replaced by the object that is passed in.
         The object can include any number of the properties shown below.
      toFormat for examples of usage.
BigNumber.config({
  FORMAT: {
    // string to prepend
    prefix: '',
    // decimal separator
    decimalSeparator: '.',
    // grouping separator of the integer part
    groupSeparator: ',',
    // primary grouping size of the integer part
    groupSize: 3,
    // secondary grouping size of the integer part
    secondaryGroupSize: 0,
    // grouping separator of the fraction part
    fractionGroupSeparator: ' ',
    // grouping size of the fraction part
    fractionGroupSize: 0,
    // string to append
    suffix: ''
  }
});
      ALPHABET'0123456789abcdefghijklmnopqrstuvwxyz'
      BigNumber constructor or
        toString.
      '+' and '-', or the decimal separator '.'.
      // duodecimal (base 12)
BigNumber.config({ ALPHABET: '0123456789TE' })
x = new BigNumber('T', 12)
x.toString()                // '10'
x.toString(12)              // 'T'
      Returns an object with the above properties and their current values.
      Throws if object is not an object, or if an invalid value is assigned to
      one or more of the above properties. See Errors.
    
BigNumber.config({
  DECIMAL_PLACES: 40,
  ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
  EXPONENTIAL_AT: [-10, 20],
  RANGE: [-500, 500],
  CRYPTO: true,
  MODULO_MODE: BigNumber.ROUND_FLOOR,
  POW_PRECISION: 80,
  FORMAT: {
    groupSize: 3,
    groupSeparator: ' ',
    decimalSeparator: ','
  },
  ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
});
obj = BigNumber.config();
obj.DECIMAL_PLACES        // 40
obj.RANGE                 // [-500, 500]
    .isBigNumber(value) ⇒ boolean
    value: any
      Returns true if value is a BigNumber instance, otherwise returns
      false.
    
x = 42 y = new BigNumber(x) BigNumber.isBigNumber(x) // false y instanceof BigNumber // true BigNumber.isBigNumber(y) // true BN = BigNumber.clone(); z = new BN(x) z instanceof BigNumber // false BigNumber.isBigNumber(z) // true
      If value is a BigNumber instance and BigNumber.DEBUG is true,
      then this method will also check if value is well-formed, and throw if it is not.
      See Errors.
    
The check can be useful if creating a BigNumber from an object literal. See BigNumber.
x = new BigNumber(10) // Change x.c to an illegitimate value. x.c = NaN BigNumber.DEBUG = false // No error. BigNumber.isBigNumber(x) // true BigNumber.DEBUG = true // Error. BigNumber.isBigNumber(x) // '[BigNumber Error] Invalid BigNumber'
.max(n...) ⇒ BigNumber
      n: number|string|BigNumber
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the maximum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.maximum(4e9, x, '123456789.9')      // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.max.apply(null, arr)                // '14'
    .min(n...) ⇒ BigNumber
      n: number|string|BigNumber
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the minimum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.minimum(4e9, x, '123456789.9')      // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.min.apply(null, arr)                // '-15.9999'
    .random([dp]) ⇒ BigNumber
    dp: number: integer, 0 to 1e+9 inclusive
      Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and
      less than 1.
    
      The return value will have dp decimal places (or less if trailing zeros are
      produced).
      If dp is omitted then the number of decimal places will default to the current
      DECIMAL_PLACES setting.
    
      Depending on the value of this BigNumber constructor's
      CRYPTO setting and the support for the
      crypto object in the host environment, the random digits of the return value are
      generated by either Math.random (fastest), crypto.getRandomValues
      (Web Cryptography API in recent browsers) or crypto.randomBytes (Node.js).
    
      To be able to set CRYPTO to true when using
      Node.js, the crypto object must be available globally:
    
global.crypto = require('crypto')
    
      If CRYPTO is true, i.e. one of the
      crypto methods is to be used, the value of a returned BigNumber should be
      cryptographically-secure and statistically indistinguishable from a random value.
    
      Throws if dp is invalid. See Errors.
    
BigNumber.config({ DECIMAL_PLACES: 10 })
BigNumber.random()              // '0.4117936847'
BigNumber.random(20)            // '0.78193327636914089009'
    .sum(n...) ⇒ BigNumber
      n: number|string|BigNumber
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the sum of the arguments.
The return value is always exact and unrounded.
x = new BigNumber('3257869345.0378653')
BigNumber.sum(4e9, x, '123456789.9')      // '7381326134.9378653'
arr = [2, new BigNumber(14), '15.9999', 12]
BigNumber.sum.apply(null, arr)            // '43.9999'
    
      The library's enumerated rounding modes are stored as properties of the constructor.
      (They are not referenced internally by the library itself.)
    
      Rounding modes 0 to 6 (inclusive) are the same as those of Java's
      BigDecimal class.
    
| Property | Value | Description | 
|---|---|---|
| ROUND_UP | 0 | Rounds away from zero | 
| ROUND_DOWN | 1 | Rounds towards zero | 
| ROUND_CEIL | 2 | Rounds towards Infinity | 
| ROUND_FLOOR | 3 | Rounds towards -Infinity | 
| ROUND_HALF_UP | 4 | Rounds towards nearest neighbour. If equidistant, rounds away from zero | 
| ROUND_HALF_DOWN | 5 | Rounds towards nearest neighbour. If equidistant, rounds towards zero | 
| ROUND_HALF_EVEN | 6 | Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour | 
| ROUND_HALF_CEIL | 7 | Rounds towards nearest neighbour. If equidistant, rounds towards Infinity | 
| ROUND_HALF_FLOOR | 8 | Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity | 
BigNumber.config({ ROUNDING_MODE: BigNumber.ROUND_CEIL })
BigNumber.config({ ROUNDING_MODE: 2 })     // equivalent
    undefined|false|true
      If BigNumber.DEBUG is set true then an error will be thrown
      if this BigNumber constructor receives an invalid value, such as
      a value of type number with more than 15 significant digits.
      See BigNumber.
    
      An error will also be thrown if the isBigNumber
      method receives a BigNumber that is not well-formed.
      See isBigNumber.
    
BigNumber.DEBUG = true
The methods inherited by a BigNumber instance from its constructor's prototype object.
A BigNumber is immutable in the sense that it is not changed by its methods.
      The treatment of ±0, ±Infinity and NaN is
      consistent with how JavaScript treats these values.
    
Many method names have a shorter alias.
.abs() ⇒ BigNumberReturns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber.
The return value is always exact and unrounded.
x = new BigNumber(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.comparedTo(n [, base]) ⇒ number
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
| Returns | |
|---|---|
| 1 | If the value of this BigNumber is greater than the value of n | 
| -1 | If the value of this BigNumber is less than the value of n | 
| 0 | If this BigNumber and nhave the same value | 
| null | If the value of either this BigNumber or nisNaN | 
x = new BigNumber(Infinity)
y = new BigNumber(5)
x.comparedTo(y)                 // 1
x.comparedTo(x.minus(1))        // 0
y.comparedTo(NaN)               // null
y.comparedTo('110', 2)          // -1
    .dp([dp [, rm]]) ⇒ BigNumber|number
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      If dp is a number, returns a BigNumber whose value is the value of this BigNumber
      rounded by rounding mode rm to a maximum of dp decimal places.
    
      If dp is omitted, or is null or undefined, the return
      value is the number of decimal places of the value of this BigNumber, or null if
      the value of this BigNumber is ±Infinity or NaN.
    
      If rm is omitted, or is null or undefined,
      ROUNDING_MODE is used.
    
      Throws if dp or rm is invalid. See Errors.
    
x = new BigNumber(1234.56)
x.decimalPlaces(1)                     // '1234.6'
x.dp()                                 // 2
x.decimalPlaces(2)                     // '1234.56'
x.dp(10)                               // '1234.56'
x.decimalPlaces(0, 1)                  // '1234'
x.dp(0, 6)                             // '1235'
x.decimalPlaces(1, 1)                  // '1234.5'
x.dp(1, BigNumber.ROUND_HALF_EVEN)     // '1234.6'
x                                      // '1234.56'
y = new BigNumber('9.9e-101')
y.dp()                                 // 102
    .div(n [, base]) ⇒ BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the value of this BigNumber divided by
      n, rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE settings.
    
x = new BigNumber(355) y = new BigNumber(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71' x.div(47, 16) // '5'
.idiv(n [, base]) ⇒
      BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
      n.
    
x = new BigNumber(5)
y = new BigNumber(3)
x.dividedToIntegerBy(y)         // '1'
x.idiv(0.7)                     // '7'
x.idiv('0.f', 16)               // '5'
    .pow(n [, m]) ⇒ BigNumber
    
      n: number|string|BigNumber: integer
      m: number|string|BigNumber
    
      Returns a BigNumber whose value is the value of this BigNumber exponentiated by
      n, i.e. raised to the power n, and optionally modulo a modulus
      m.
    
      Throws if n is not an integer. See Errors.
    
      If n is negative the result is rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE settings.
    
      As the number of digits of the result of the power operation can grow so large so quickly,
      e.g. 123.45610000 has over 50000 digits, the number of significant
      digits calculated is limited to the value of the
      POW_PRECISION setting (unless a modulus
      m is specified).
    
      By default POW_PRECISION is set to 0.
      This means that an unlimited number of significant digits will be calculated, and that the
      method's performance will decrease dramatically for larger exponents.
    
      If m is specified and the value of m, n and this
      BigNumber are integers, and n is positive, then a fast modular exponentiation
      algorithm is used, otherwise the operation will be performed as
      x.exponentiatedBy(n).modulo(m) with a
      POW_PRECISION of 0.
    
Math.pow(0.7, 2) // 0.48999999999999994 x = new BigNumber(0.7) x.exponentiatedBy(2) // '0.49' BigNumber(3).pow(-2) // '0.11111111111111111111'
.integerValue([rm]) ⇒ BigNumber
    
      rm: number: integer, 0 to 8 inclusive
    
      Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
      rounding mode rm.
    
      If rm is omitted, or is null or undefined,
      ROUNDING_MODE is used.
    
      Throws if rm is invalid. See Errors.
    
x = new BigNumber(123.456) x.integerValue() // '123' x.integerValue(BigNumber.ROUND_CEIL) // '124' y = new BigNumber(-12.7) y.integerValue() // '-13' y.integerValue(BigNumber.ROUND_DOWN) // '-12'
      The following is an example of how to add a prototype method that emulates JavaScript's
      Math.round function. Math.ceil, Math.floor and
      Math.trunc can be emulated in the same way with
      BigNumber.ROUND_CEIL, BigNumber.ROUND_FLOOR and
       BigNumber.ROUND_DOWN respectively.
    
BigNumber.prototype.round = function (n) {
  return n.integerValue(BigNumber.ROUND_HALF_CEIL);
};
x.round()                               // '123'
    .eq(n [, base]) ⇒ boolean
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is equal to the value of
      n, otherwise returns false.
      As with JavaScript, NaN does not equal NaN.
    
Note: This method uses the comparedTo method internally.
0 === 1e-324                    // true
x = new BigNumber(0)
x.isEqualTo('1e-324')           // false
BigNumber(-0).eq(x)             // true  ( -0 === 0 )
BigNumber(255).eq('ff', 16)     // true
y = new BigNumber(NaN)
y.isEqualTo(NaN)                // false
    .isFinite() ⇒ boolean
      Returns true if the value of this BigNumber is a finite number, otherwise
      returns false.
    
      The only possible non-finite values of a BigNumber are NaN, Infinity
      and -Infinity.
    
x = new BigNumber(1) x.isFinite() // true y = new BigNumber(Infinity) y.isFinite() // false
      Note: The native method isFinite() can be used if
      n <= Number.MAX_VALUE.
    
.gt(n [, base]) ⇒ boolean
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is greater than the value of
      n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
0.1 > (0.3 - 0.2) // true x = new BigNumber(0.1) x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false BigNumber(0).gt(x) // false BigNumber(11, 3).gt(11.1, 2) // true
.gte(n [, base]) ⇒ boolean
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is greater than or equal to the value
      of n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
(0.3 - 0.2) >= 0.1                     // false
x = new BigNumber(0.3).minus(0.2)
x.isGreaterThanOrEqualTo(0.1)          // true
BigNumber(1).gte(x)                    // true
BigNumber(10, 18).gte('i', 36)         // true
    .isInteger() ⇒ boolean
      Returns true if the value of this BigNumber is an integer, otherwise returns
      false.
    
x = new BigNumber(1) x.isInteger() // true y = new BigNumber(123.456) y.isInteger() // false
.lt(n [, base]) ⇒ boolean
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is less than the value of
      n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
(0.3 - 0.2) < 0.1 // true x = new BigNumber(0.3).minus(0.2) x.isLessThan(0.1) // false BigNumber(0).lt(x) // true BigNumber(11.1, 2).lt(11, 3) // true
.lte(n [, base]) ⇒ boolean
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns true if the value of this BigNumber is less than or equal to the value of
      n, otherwise returns false.
    
Note: This method uses the comparedTo method internally.
0.1 <= (0.3 - 0.2)                                // false
x = new BigNumber(0.1)
x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2))  // true
BigNumber(-1).lte(x)                              // true
BigNumber(10, 18).lte('i', 36)                    // true
    .isNaN() ⇒ boolean
      Returns true if the value of this BigNumber is NaN, otherwise
      returns false.
    
x = new BigNumber(NaN)
x.isNaN()                       // true
y = new BigNumber('Infinity')
y.isNaN()                       // false
    Note: The native method isNaN() can also be used.
.isNegative() ⇒ boolean
      Returns true if the sign of this BigNumber is negative, otherwise returns
      false.
    
x = new BigNumber(-0) x.isNegative() // true y = new BigNumber(2) y.isNegative() // false
Note: n < 0 can be used if n <= -Number.MIN_VALUE.
.isPositive() ⇒ boolean
      Returns true if the sign of this BigNumber is positive, otherwise returns
      false.
    
x = new BigNumber(-0) x.isPositive() // false y = new BigNumber(2) y.isPositive() // true
.isZero() ⇒ boolean
      Returns true if the value of this BigNumber is zero or minus zero, otherwise
      returns false.
    
x = new BigNumber(-0) x.isZero() && x.isNegative() // true y = new BigNumber(Infinity) y.isZero() // false
Note: n == 0 can be used if n >= Number.MIN_VALUE.
.minus(n [, base]) ⇒ BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the value of this BigNumber minus n.
The return value is always exact and unrounded.
0.3 - 0.1 // 0.19999999999999998 x = new BigNumber(0.3) x.minus(0.1) // '0.2' x.minus(0.6, 20) // '0'
.mod(n [, base]) ⇒ BigNumber
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the value of this BigNumber modulo n, i.e.
      the integer remainder of dividing this BigNumber by n.
    
      The value returned, and in particular its sign, is dependent on the value of the
      MODULO_MODE setting of this BigNumber constructor.
      If it is 1 (default value), the result will have the same sign as this BigNumber,
      and it will match that of Javascript's % operator (within the limits of double
      precision) and BigDecimal's remainder method.
    
The return value is always exact and unrounded.
      See MODULO_MODE for a description of the other
      modulo modes.
    
1 % 0.9                         // 0.09999999999999998
x = new BigNumber(1)
x.modulo(0.9)                   // '0.1'
y = new BigNumber(33)
y.mod('a', 33)                  // '3'
    .times(n [, base]) ⇒ BigNumber
    
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
      Returns a BigNumber whose value is the value of this BigNumber multiplied by n.
    
The return value is always exact and unrounded.
0.6 * 3                         // 1.7999999999999998
x = new BigNumber(0.6)
y = x.multipliedBy(3)           // '1.8'
BigNumber('7e+500').times(y)    // '1.26e+501'
x.multipliedBy('-a', 16)        // '-6'
    .negated() ⇒ BigNumber
      Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by
      -1.
    
x = new BigNumber(1.8) x.negated() // '-1.8' y = new BigNumber(-1.3) y.negated() // '1.3'
.plus(n [, base]) ⇒ BigNumber
      n: number|string|BigNumber
      base: number
      See BigNumber for further parameter details.
    
Returns a BigNumber whose value is the value of this BigNumber plus n.
The return value is always exact and unrounded.
0.1 + 0.2                       // 0.30000000000000004
x = new BigNumber(0.1)
y = x.plus(0.2)                 // '0.3'
BigNumber(0.7).plus(x).plus(y)  // '1.1'
x.plus('0.1', 8)                // '0.225'
    .sd([d [, rm]]) ⇒ BigNumber|number
    
      d: number|boolean: integer, 1 to 1e+9
      inclusive, or true or false
      rm: number: integer, 0 to 8 inclusive.
    
      If d is a number, returns a BigNumber whose value is the value of this BigNumber
      rounded to a precision of d significant digits using rounding mode
      rm.
    
      If d is omitted or is null or undefined, the return
      value is the number of significant digits of the value of this BigNumber, or null
      if the value of this BigNumber is ±Infinity or NaN.
      If d is true then any trailing zeros of the integer
      part of a number are counted as significant digits, otherwise they are not.
    
      If rm is omitted or is null or undefined,
      ROUNDING_MODE will be used.
    
      Throws if d or rm is invalid. See Errors.
    
x = new BigNumber(9876.54321) x.precision(6) // '9876.54' x.sd() // 9 x.precision(6, BigNumber.ROUND_UP) // '9876.55' x.sd(2) // '9900' x.precision(2, 1) // '9800' x // '9876.54321' y = new BigNumber(987000) y.precision() // 3 y.sd(true) // 6
.shiftedBy(n) ⇒ BigNumber
      n: number: integer,
      -9007199254740991 to 9007199254740991 inclusive
    
      Returns a BigNumber whose value is the value of this BigNumber shifted by n
      places.
    
      The shift is of the decimal point, i.e. of powers of ten, and is to the left if n
      is negative or to the right if n is positive.
    
The return value is always exact and unrounded.
      Throws if n is invalid. See Errors.
    
x = new BigNumber(1.23) x.shiftedBy(3) // '1230' x.shiftedBy(-3) // '0.00123'
.sqrt() ⇒ BigNumber
      Returns a BigNumber whose value is the square root of the value of this BigNumber,
      rounded according to the current
      DECIMAL_PLACES and
      ROUNDING_MODE settings.
    
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
x = new BigNumber(16) x.squareRoot() // '4' y = new BigNumber(3) y.sqrt() // '1.73205080756887729353'
.toExponential([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber in exponential notation rounded
      using rounding mode rm to dp decimal places, i.e with one digit
      before the decimal point and dp digits after it.
    
      If the value of this BigNumber in exponential notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      If dp is omitted, or is null or undefined, the number
      of digits after the decimal point defaults to the minimum number of digits necessary to
      represent the value exactly.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      Throws if dp or rm is invalid. See Errors.
    
x = 45.6 y = new BigNumber(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN) x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed([dp [, rm]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber in normal (fixed-point) notation
      rounded to dp decimal places using rounding mode rm.
    
      If the value of this BigNumber in normal notation has fewer than dp fraction
      digits, the return value will be appended with zeros accordingly.
    
      Unlike Number.prototype.toFixed, which returns exponential notation if a number
      is greater or equal to 1021, this method will always return normal
      notation.
    
      If dp is omitted or is null or undefined, the return
      value will be unrounded and in normal notation. This is also unlike
      Number.prototype.toFixed, which returns the value to zero decimal places.
      It is useful when fixed-point notation is required and the current
      EXPONENTIAL_AT setting causes
      toString to return exponential notation.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      Throws if dp or rm is invalid. See Errors.
    
x = 3.456 y = new BigNumber(x) x.toFixed() // '3' y.toFixed() // '3.456' y.toFixed(0) // '3' x.toFixed(2) // '3.46' y.toFixed(2) // '3.46' y.toFixed(2, 1) // '3.45' (ROUND_DOWN) x.toFixed(5) // '3.45600' y.toFixed(5) // '3.45600'
.toFormat([dp [, rm[, format]]]) ⇒ string
    
      dp: number: integer, 0 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
      format: object: see FORMAT
    
      Returns a string representing the value of this BigNumber in normal (fixed-point) notation
      rounded to dp decimal places using rounding mode rm, and formatted
      according to the properties of the format object.
    
      See FORMAT and the examples below for the properties of the
      format object, their types, and their usage. A formatting object may contain
      some or all of the recognised properties.
    
      If dp is omitted or is null or undefined, then the
      return value is not rounded to a fixed number of decimal places.
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
      If format is omitted or is null or undefined, the
      FORMAT object is used.
    
      Throws if dp, rm or format is invalid. See
      Errors.
    
fmt = {
  prefix: '',
  decimalSeparator: '.',
  groupSeparator: ',',
  groupSize: 3,
  secondaryGroupSize: 0,
  fractionGroupSeparator: ' ',
  fractionGroupSize: 0,
  suffix: ''
}
x = new BigNumber('123456789.123456789')
// Set the global formatting options
BigNumber.config({ FORMAT: fmt })
x.toFormat()                              // '123,456,789.123456789'
x.toFormat(3)                             // '123,456,789.123'
// If a reference to the object assigned to FORMAT has been retained,
// the format properties can be changed directly
fmt.groupSeparator = ' '
fmt.fractionGroupSize = 5
x.toFormat()                              // '123 456 789.12345 6789'
// Alternatively, pass the formatting options as an argument
fmt = {
  prefix: '=> ',
  decimalSeparator: ',',
  groupSeparator: '.',
  groupSize: 3,
  secondaryGroupSize: 2
}
x.toFormat()                              // '123 456 789.12345 6789'
x.toFormat(fmt)                           // '=> 12.34.56.789,123456789'
x.toFormat(2, fmt)                        // '=> 12.34.56.789,12'
x.toFormat(3, BigNumber.ROUND_UP, fmt)    // '=> 12.34.56.789,124'
    .toFraction([maximum_denominator])
      ⇒ [BigNumber, BigNumber]
    
      maximum_denominator:
      number|string|BigNumber: integer >= 1 and <=
      Infinity
    
      Returns an array of two BigNumbers representing the value of this BigNumber as a simple
      fraction with an integer numerator and an integer denominator. The denominator will be a
      positive non-zero value less than or equal to maximum_denominator.
    
      If a maximum_denominator is not specified, or is null or
      undefined, the denominator will be the lowest value necessary to represent the
      number exactly.
    
      Throws if maximum_denominator is invalid. See Errors.
    
x = new BigNumber(1.75)
x.toFraction()                  // '7, 4'
pi = new BigNumber('3.14159265358')
pi.toFraction()                 // '157079632679,50000000000'
pi.toFraction(100000)           // '312689, 99532'
pi.toFraction(10000)            // '355, 113'
pi.toFraction(100)              // '311, 99'
pi.toFraction(10)               // '22, 7'
pi.toFraction(1)                // '3, 1'
    .toJSON() ⇒ stringAs valueOf.
x = new BigNumber('177.7e+457')
y = new BigNumber(235.4325)
z = new BigNumber('0.0098074')
// Serialize an array of three BigNumbers
str = JSON.stringify( [x, y, z] )
// "["1.777e+459","235.4325","0.0098074"]"
// Return an array of three BigNumbers
JSON.parse(str, function (key, val) {
    return key === '' ? val : new BigNumber(val)
})
    .toNumber() ⇒ numberReturns the value of this BigNumber as a JavaScript number primitive.
This method is identical to using type coercion with the unary plus operator.
x = new BigNumber(456.789)
x.toNumber()                    // 456.789
+x                              // 456.789
y = new BigNumber('45987349857634085409857349856430985')
y.toNumber()                    // 4.598734985763409e+34
z = new BigNumber(-0)
1 / z.toNumber()                // -Infinity
1 / +z                          // -Infinity
    .toPrecision([sd [, rm]]) ⇒ string
    
      sd: number: integer, 1 to 1e+9 inclusive
      rm: number: integer, 0 to 8 inclusive
    
      Returns a string representing the value of this BigNumber rounded to sd
      significant digits using rounding mode rm.
    
      If sd is less than the number of digits necessary to represent the integer part
      of the value in normal (fixed-point) notation, then exponential notation is used.
    
      If sd is omitted, or is null or undefined, then the
      return value is the same as n.toString().
      If rm is omitted or is null or undefined,
      ROUNDING_MODE is used.
    
      Throws if sd or rm is invalid. See Errors.
    
x = 45.6 y = new BigNumber(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP) y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN) x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.toString([base]) ⇒ string
      base: number: integer, 2 to ALPHABET.length
      inclusive (see ALPHABET).
    
      Returns a string representing the value of this BigNumber in the specified base, or base
      10 if base is omitted or is null or
      undefined.
    
      For bases above 10, and using the default base conversion alphabet
      (see ALPHABET), values from 10 to
      35 are represented by a-z
      (as with Number.prototype.toString).
    
      If a base is specified the value is rounded according to the current
      DECIMAL_PLACES
      and ROUNDING_MODE settings.
    
      If a base is not specified, and this BigNumber has a positive
      exponent that is equal to or greater than the positive component of the
      current EXPONENTIAL_AT setting,
      or a negative exponent equal to or less than the negative component of the
      setting, then exponential notation is returned.
    
If base is null or undefined it is ignored.
      Throws if base is invalid. See Errors.
    
x = new BigNumber(750000)
x.toString()                    // '750000'
BigNumber.config({ EXPONENTIAL_AT: 5 })
x.toString()                    // '7.5e+5'
y = new BigNumber(362.875)
y.toString(2)                   // '101101010.111'
y.toString(9)                   // '442.77777777777777777778'
y.toString(32)                  // 'ba.s'
BigNumber.config({ DECIMAL_PLACES: 4 });
z = new BigNumber('1.23456789')
z.toString()                    // '1.23456789'
z.toString(10)                  // '1.2346'
    .valueOf() ⇒ string
      As toString, but does not accept a base argument and includes
      the minus sign for negative zero.
    
x = new BigNumber('-0')
x.toString()                    // '0'
x.valueOf()                     // '-0'
y = new BigNumber('1.777e+457')
y.valueOf()                     // '1.777e+457'
    The properties of a BigNumber instance:
| Property | Description | Type | Value | 
|---|---|---|---|
| c | coefficient* | number [] | Array of base 1e14numbers | 
| e | exponent | number | Integer, -1000000000to1000000000inclusive | 
| s | sign | number | -1or1 | 
*significand
      The value of any of the c, e and s properties may also
      be null.
    
The above properties are best considered to be read-only. In early versions of this library it was okay to change the exponent of a BigNumber by writing to its exponent property directly, but this is no longer reliable as the value of the first element of the coefficient array is now dependent on the exponent.
Note that, as with JavaScript numbers, the original exponent and fractional trailing zeros are not necessarily preserved.
x = new BigNumber(0.123)              // '0.123'
x.toExponential()                     // '1.23e-1'
x.c                                   // '1,2,3'
x.e                                   // -1
x.s                                   // 1
y = new Number(-123.4567000e+2)       // '-12345.67'
y.toExponential()                     // '-1.234567e+4'
z = new BigNumber('-123.4567000e+2')  // '-12345.67'
z.toExponential()                     // '-1.234567e+4'
z.c                                   // '1,2,3,4,5,6,7'
z.e                                   // 4
z.s                                   // -1
    
      The table below shows how ±0, NaN and
      ±Infinity are stored.
    
| c | e | s | |
|---|---|---|---|
| ±0 | [0] | 0 | ±1 | 
| NaN | null | null | null | 
| ±Infinity | null | null | ±1 | 
x = new Number(-0) // 0 1 / x == -Infinity // true y = new BigNumber(-0) // '0' y.c // '0' ( [0].toString() ) y.e // 0 y.s // -1
The table below shows the errors that are thrown.
      The errors are generic Error objects whose message begins
      '[BigNumber Error]'.
    
| Method | Throws | 
|---|---|
| BigNumbercomparedTodividedBydividedToIntegerByisEqualToisGreaterThanisGreaterThanOrEqualToisLessThanisLessThanOrEqualTominusmoduloplusmultipliedBy | Base not a primitive number | 
| Base not an integer | |
| Base out of range | |
| Number primitive has more than 15 significant digits* | |
| Not a base... number* | |
| Not a number* | |
| clone | Object expected | 
| config | Object expected | 
| DECIMAL_PLACESnot a primitive number | |
| DECIMAL_PLACESnot an integer | |
| DECIMAL_PLACESout of range | |
| ROUNDING_MODEnot a primitive number | |
| ROUNDING_MODEnot an integer | |
| ROUNDING_MODEout of range | |
| EXPONENTIAL_ATnot a primitive number | |
| EXPONENTIAL_ATnot an integer | |
| EXPONENTIAL_ATout of range | |
| RANGEnot a primitive number | |
| RANGEnot an integer | |
| RANGEcannot be zero | |
| RANGEcannot be zero | |
| CRYPTOnot true or false | |
| cryptounavailable | |
| MODULO_MODEnot a primitive number | |
| MODULO_MODEnot an integer | |
| MODULO_MODEout of range | |
| POW_PRECISIONnot a primitive number | |
| POW_PRECISIONnot an integer | |
| POW_PRECISIONout of range | |
| FORMATnot an object | |
| ALPHABETinvalid | |
| decimalPlacesprecisionrandomshiftedBytoExponentialtoFixedtoFormattoPrecision | Argument not a primitive number | 
| Argument not an integer | |
| Argument out of range | |
| decimalPlacesprecision | Argument not true or false | 
| exponentiatedBy | Argument not an integer | 
| isBigNumber | Invalid BigNumber* | 
| minimummaximum | Not a number* | 
| random | crypto unavailable | 
| toFormat | Argument not an object | 
| toFraction | Argument not an integer | 
| Argument out of range | |
| toString | Base not a primitive number | 
| Base not an integer | |
| Base out of range | 
*Only thrown if BigNumber.DEBUG is true.
To determine if an exception is a BigNumber Error:
try {
  // ...
} catch (e) {
  if (e instanceof Error && e.message.indexOf('[BigNumber Error]') === 0) {
      // ...
  }
}
    
      To prevent the accidental use of a BigNumber in primitive number operations, or the
      accidental addition of a BigNumber to a string, the valueOf method can be safely
      overwritten as shown below.
    
      The valueOf method is the same as the
      toJSON method, and both are the same as the
      toString method except they do not take a base
      argument and they include the minus sign for negative zero.
    
BigNumber.prototype.valueOf = function () {
  throw Error('valueOf called!')
}
x = new BigNumber(1)
x / 2                    // '[BigNumber Error] valueOf called!'
x + 'abc'                // '[BigNumber Error] valueOf called!'
    Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y)                      // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y)                 // 4.1400000
    To specify the precision of a value is to specify that the value lies within a certain range.
      In the first example, x has a value of 1.0. The trailing zero shows
      the precision of the value, implying that it is in the range 0.95 to
      1.05. Similarly, the precision indicated by the trailing zeros of y
      indicates that the value is in the range 1.09995 to 1.10005.
    
      If we  add the two lowest values in the ranges we have, 0.95 + 1.09995 = 2.04995,
      and if we add the two highest values we have, 1.05 + 1.10005 = 2.15005, so the
      range of the result of the addition implied by the precision of its operands is
      2.04995 to 2.15005.
    
      The result given by BigDecimal of 2.1000 however, indicates that the value is in
      the range 2.09995 to 2.10005 and therefore the precision implied by
      its trailing zeros may be misleading.
    
      In the second example, the true range is 4.122744 to 4.157256 yet
      the BigDecimal answer of 4.1400000 indicates a range of 4.13999995
      to  4.14000005. Again, the precision implied by the trailing zeros may be
      misleading.
    
      This library, like binary floating point and most calculators, does not retain trailing
      fractional zeros. Instead, the toExponential, toFixed and
      toPrecision methods enable trailing zeros to be added if and when required.